
LIGO on OSG
Brian Bockelman
OSG AHM 2016

THIS IS NOT A LIGO
TALK

(In fact, the LIGO collaboration meeting is this week on the
west coast)

This is a talk about
enabling LIGO on OSG

Ancient History:
• LIGO was an OSG stakeholder in the early days.

• However, we scared them off for a few reasons, including:

• OSG was hard to use: Payload jobs were sent to GRAM using Condor-
G. Quite unreliable and a foreign interface to users.

• No solution for software / data: We asked sites to provide NFS
mounts ($OSG_APP, $OSG_DATA) but these were inconsistently
deployed and had no management tools.

• User-unfriendly requirement of certificates: The process of getting a
DOEGrid certificate was grueling.

• Running opportunistically on OSG required more effort / expertise / blood /
sweat / tears than LIGO had to spare. Cost/Benefit didn’t make sense!

The Challenge: 
A decade later, can OSG

do better?

Application Details - PyCBC
• PyCBC is a software suite to search LIGO data for

Compact Binary Coalescence (CBC) events.

• Looking for two large things spinning fast, then
hitting each other.

• Driver written in python; compiles then invokes JIT-
compiled C++ code.

• Workflow managed by Pegasus and executed
using HTCondor.

The Solution - the players

• Resource Provisioning: GlideinWMS.

• Job management: HTCondor.

• Data distribution: Xrootd (originally GridFTP) from
Nebraska.

• Software distribution: OASIS.

Job Management
• Resources were provisioned out of the OSG opportunistic pool:

unique twist was LIGO required us to verify UID separation from
other users.

• Additionally, XD allocations at Stampede were used (see https://
indico.fnal.gov/contributionDisplay.py?contribId=33&confId=10571).

• Overall, about 4M CPU hours were used in fall 2015

• After that, it was a “normal HTCondor pool” - just as LIGO users
were used to.

https://indico.fnal.gov/contributionDisplay.py?contribId=33&confId=10571

Last two weeks - 4.5M hours

(As a comparison, XD allocation is 2M SUs)

Data Distribution
• The relevant LIGO dataset is about 5TB and divided into 500MB

files.

• Pegasus knows all files that a given job will need; each job will
need 1-2 files.

• Jobs are several hours long: aggregate transfer rate works out
to be about 1Mbps.

• Solution: opportunistically use the GridFTP/Xrootd
infrastructure at the Nebraska CMS Tier-2; stream data remotely
to jobs.

• No staging of data to each site was necessary.

Data Distribution
Syracuse

HTCondor Submit
Host

LIGO Pool: SUGAR

Generic OSG Site

WN
WN

WNWN
PILOT

JOBS

Nebraska

HDFS Install

LIGO Data Replicator
GridFTP Xfer GridFTP Xfer

Xrootd Xfer

As LIGO usually gets
about 10k cores, typical

throughput from
Nebraska is 10Gbps.

From October to
December, about 1PB of

data was transferred.

Looking Forward
• We “got lucky” in our data distribution solution:

• PyCBC’s data volume requirements were small enough
to opportunistically use Nebraska.

• Transfer rates were small enough to

• PyCBC was using Pegasus, which can stage data.

• Several just-in-time bugfixes from OSG and Pegasus
team to glue it all together!

• Can we do better?

Looking Forward - 
ligo.osgstorage.org

• We have been working with the CVMFS team to add features for
exporting a data federation via CVMFS.

• This allows us to securely provide global a POSIX mount with
all of LIGO’s data.

• How? See Derek’s talk tomorrow!

• Will require CVMFS 2.2.2 on the worker node: will take a few
months for sites to upgrade. Probably large-scale usage by late
summer.

• The underlying “data federation” will be the Nebraska T2 until
Stash does authenticated exports.

http://ligo.osgstorage.org

A Second Challenge
• LIGO’s dedicated resources have required a very

specific host OS environment. Scientific software is
distributed via RPMs and installed into the system.

• This is quite pleasant for dedicated users but
painful for shared clusters.

• Can OSG help here?

• GA Tech was the first cluster we started with.

Well, sorta…
• Even though OSG can coexist better with a university cluster, there’s still a

high hill to climb.

• Hard for busy sysadmins to keep things sustained!

• Not enough LIGO pipelines are converted to effectively utilize available
resources.

Conclusions
• Using OSG services, LIGO has been able to provision LIGO owned, OSG

opportunistic, and XD allocation-based resources at large-scale.

• This has made a significant contribution to the PyCBC work.

• We were able to quickly execute this through reuse of solutions done for
the OSG VO.

• OSG helped LIGO access contributed resources without requiring them to
convert to LIGO Data Grid sites.

• Challenges remain:

• PyCBC was the “best” workflow for OSG. Can we move others?

• We could do a much better job of utilizing GA Tech.

So, did OSG discover
Gravitational Waves?

• No!

• It turns out the initial discovery was a “loud” signal that
was noticed immediately.

• However, OSG opportunistic computing helped support
the analysis and improve the resulting paper.

• The CBC team is currently analyzing the remainder of the
science run ending in mid-January.

• Hopefully the OSG opportunistic contribution will lead to
significant new results!

